PHYSICAL REVIEW E 76, 056318 (2007)

Morphodynamic modeling of erodible laminar channels
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A two-dimensional model for the erosion generated by viscous free-surface flows, based on the shallow-
water equations and the lubrication approximation, is presented. It has a family of self-similar solutions for
straight erodible channels, with an aspect ratio that increases in time. It is also shown, through a simplified
stability analysis, that a laminar river can generate various bar instabilities very similar to those observed in
natural rivers. This theoretical similarity reflects the meandering and braiding tendencies of laminar rivers
indicated by F. Métivier and P. Meunier [J. Hydrol. 27, 22 (2003)]. Finally, we propose a simple scenario for
the transition between patterns observed in experimental erodible channels.
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I. INTRODUCTION

Natural rivers seldom form straight beds. Instead, they
usually develop braids or meanders as a consequence of
current-induced sediment transport. The understanding of
such river sedimentation mechanisms can also help to char-
acterize the spatial heterogeneity of alluvial rocks, which is a
key parameter when simulating aquifer flows or oil traps in
petroleum reservoirs [ 1]. The theoretical work in [2-4] intro-
duced among geomorphologists the fruitful idea that such
patterns may originate in the linear instability of the flow,
bed, and bank system. Two-dimensional turbulent shallow
water equations associated with a simple sediment transport
law are able to predict the formation of alternate bars in
channels of constant width. Such bars have been commonly
accepted as a key phenomenon for braids and meander for-
mation [5]. Numerous refinements of this theory may be
found in the literature: [6] performed the bar stability analy-
sis in three dimensions, while [5] focused on the differentia-
tion between braids and meanders. Later [7,8] relaxed the
rigid-banks hypothesis, and [9] and more recently [ 10] mod-
eled the nonlinear evolution of free bars. All these works
(and to our knowledge, every study in this field) considered
turbulent flows, which is entirely legitimate as far as natural
rivers are concerned (the average Reynolds number of the
Seine River in Paris is about 106). However, one should not
conclude from this ubiquity of turbulence that braiding and
meandering are inherently turbulent phenomena. [11] very
recently accumulated experimental evidence showing that
laminar flumes may also generate many patterns created by
real rivers. In particular, the constant flow of a thin liquid
film down a homogeneous granular bed initially crossed by a
straight channel exhibits rather complex pattern dynamics as
the flume is deformed by erosion (see [12]). First, the chan-
nel widens while remaining straight. Then a meanderlike in-
stability develops, which deforms both the bed and the
banks. Eventually, more bars develop in the middle of the
channel and the river starts to braid [32]. This behavior is
qualitatively comparable to the one of larger channels, at
higher Reynolds number (see the two meters-wide experi-
ment in [13]). To our knowledge, no quantitative experimen-
tal results have been published about river erosion instabili-
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ties in the laminar regime. As a consequence, the results
presented here can only be compared to the qualitative evo-
lution described in [12]. Reference to turbulent experiments
can only illustrate the sound similarity with the laminar case.

Our objective is to comfort the idea that microrivers can
be an intermediate step toward the understanding of natural
river morphodynamics. We do not claim that quantitative re-
sults from microrivers could be extrapolated to field results
(see Sec. IT A). We are rather convinced that such small-scale
experiments share with larger ones many features still under
investigation (nonlinearity of the flow-sediment interaction,
equilibrium shape of the bed, behavior and influence of the
bank). Such laminar flow approach can also help to disen-
tangle the role of the turbulence in the river morphodynam-
ics. Moreover, theoretical as well as numerical river models
could be easily tested against microriver data, before adding
the complexity of turbulence and switching to larger experi-
ments and natural rivers.

In a first section, a two-dimensional evolution model for
laminar flumes is presented. It is based on the assumption
that the velocity profile is close to Nuflelt’s one. A rather
general erosion law is then discussed and compared to the
experiments in [14]. The following section is devoted to the
study of a straight river widening process, and an analytical
solution is proposed in a simple case. In the third section, the
linear stability analysis of a straight laminar flume with solid
banks is presented.

II. TWO-DIMENSIONAL MODEL

Let us consider an experiment during which an initial
channel incised into a uniform and noncohesive sand layer is
eroded by a viscous flow. If the slope of the sand bed re-
mains small enough, one may use two-dimensional equations
to model both the water flow and the sediment transport. A
rather general assumption (commonly used in river mechan-
ics) consists in the time-scale separation between the flow
and erosion process: The bed evolves slowly enough for the
flow to be quasistatic (see [5,4,6,8]). Of course, this hypoth-
esis fails during such violent events as roll waves.

In the present article the following notations are used (see
also Fig. 1): x and y are the coordinates in the plane of the
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FIG. 1. Sketch of a riverbed: / is the elevation of the sand
surface and d is the water depth. The axes x and z are tilted with
respect to horizontal. The Saint-Venant approximation is used for
the velocity field u=(u,v).

experiment, the first aiming toward the main slope, and z is
the coordinate normal to the plate; 4 is the elevation of the
sand surface and d is the water depth (=h+d is thus the
water level); u=(u,v) is the vertically averaged water veloc-
ity, the horizontal water flux components being ud and vd; S
is the plate tilt; g is the magnitude of gravity, and v is the
kinematic viscosity of water.

A. Water flow

The present microriver model requires that the water flow
is laminar, so that it can be approximated by a vertical ve-
locity profile of NuBelt type. For this assumption to hold, the
Reynolds number Re=uyd,/v must remain low enough
(dy and u are the typical height and velocity scales, respec-
tively). The water velocity @ is thus approached by a para-
bolic velocity profile which adapts instantaneously to the to-

pography:
3
8(x,y,2.1) =~ 2862 = §(ulx.y.1),v(x.y.1).0), (1)

where £é=(z—h)/d. This method corresponds to the lubrica-
tion approximation. Different approaches may be found in
[15] or [16], though in one dimension. Equation (1) allows
us to define the horizontal shear stress vector 7 at the bed
surface:

o u
T=pv—| =3p,r . (2
< 1 z=h d

Secondary currents are thus neglected, although many au-
thors believe they strongly influence erosion in developed
meanders (see, for example, [17]). The effect of secondary
currents is sometimes taken into account in the shallow water
framework by mean of an ad hoc term in sediment transport
equations (see [8]). Since the present study is restricted to
straight channels, we will hereafter assume that the curvature
of the flow remains small enough for the secondary currents
to remain negligible (this argument is developed in [18]).
This approximation is actually correct for any curvature, pro-
vided the Reynolds number is low enough.

The vertical integration of the Navier-Stokes equations,
associated with Eq. (1), leads to the viscous shallow water
equations (sometimes named the Saint-Venant’s equations):
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6 3
(- V)u=g[-Vd+h)+Se]- d—’z’u, 3)

V- (ud) =0, (4)

where e, is the unit vector parallel to the x axis. These equa-
tions are very similar to those used for turbulent rivers. The
only differences lie in the coefficient 6/5 which becomes 1
in the turbulent case, and in the friction term —3vu/d? which
becomes —Cjullu/d (C; being a friction coefficient, related
to the Chézy coefficient). One cannot thus expect microrivers
to be scaled models for natural ones, since the laminar flow
equations cannot be reduced to the classical turbulent ones.
On the other hand, it is interesting to point out similarities
and differences between these two different (although not too
far) cases, turbulent and laminar.

B. Sediment transport

The river bed evolves under the influence of both erosion
and avalanches. In the present context erosion consists of
flow-induced bed-load transport of sand grains. On the other
hand, avalanches are collective phenomena triggered by an
excess slope of the sand surface. In the continuous model
developed here, we can only handle the average effects of
erosion and avalanches. This approximation allows for the
definition of a total volumic sediment flux q(x,y,?) inte-
grated along the vertical direction. Assuming a strong time-
scale separation between erosion and avalanches, one may
consider the associated fluxes (respectively, q, and q,) as
independent. The continuity equation for sand then reads

2=V (5)
where q=q,+q,. Finally, closure relations have to be de-
duced, either on dimensional, physical, or empirical grounds
in order to link Eq. (5) to the flow equations.

Erosion contribution. Most of the relations between the
sediment flux and the flow are proposed in the literature as
functions of the Shields number 6, which expresses the ratio
between hydrodynamic forces exerted on a grain to its ap-
parent weight:

_

- ds(pg - pw)g ’

where dy, p,, pg, and 7 are, respectively, the typical particle
diameter, the density of water, the density of a grain, and the
bottom shear stress. As suggested in [19], we propose the
following expression as a classical relationship (see the re-
view of [20]) for small slope:

(6)

T

=0 -G-Vh], 7
q. = ¢( )(Hﬂl > (7)

where ¢ is a growing function that may include a threshold
value, and G is a diagonal operator.

To determine a plausible form for ¢(6) we shall use re-
cent experimental results obtained by Charru, Mouilleron,
and Eiff for grain transport in the viscous flow regime [14].
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FIG. 2. Different transport laws compared with the experimental
results obtained by [14]. The grains are transported by a viscous
flow in a circular Hele-Shaw cell. N, is the particle flux and V is
the settling velocity of a particle. Dashed: Threshold law proposed
by [14]; N,d,/ V,=0.856(6—0.12)H(6-0.12). Solid line: Power-law
fit, N,d,/ V,=5.136*73. This law will be used as an illustrative case
in the present study.

Their results on grain transports are partially reproduced in
Fig. 2 and these authors suggest then the following transport
law:

N,d:

T=O.850(6—0.12)H(0—0.12), (8)
where N, is the particle flux and V| is the Stokes settling
velocity of a particle [V,=gd*(p,—p,)/(18vp,)]. H is the
Heaviside function. N, is linked to g through g=N,V, where
V is the volume filled by a particle in the sediment layer.
According to this expression, no sediment is transported at
Shields number values below a threshold. However, [14] in-
dicates that some particles remain in motion at Shields num-
bers lower than 0.12 during a transition regime, and will
eventually settle after an “armoring time [---] very large
compared to the hydrodynamic time scales.” Maybe due to
this armoring time ¢,, their measurements of the sediment
flux do not exactly vanish below the threshold (see Fig. 2).
According to [14], a typical dimensionless value for 7, is 10°.
In the present notations, the ratio between the erosion typical
time scale T defined in Sec. III A reads

t Y o dy\P
—a=105y—2<—pw 5—0) : )
T dde Ps — Pw d.v

which is typically much larger than one. The armoring phe-
nomenon is a possible explanation for thresholds in transport
laws. Since it occurs at time scales much larger than the
erosion ones, it is tempting to use a pure power law function
instead of formula (8), as already proposed earlier to model
sediment transport under turbulent flow (such as [10] for
instance). Such a law may be adjusted to fit the data of [14]
(see again Fig. 2) and it gives
2
5’%:5.1303‘75. (10)

s

Relations (8) and (10) cannot be in fact clearly separated by
the experiments of [14]. Thus, for simplicity reasons, we will
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use the second one in what follows. This choice will be
discussed again in Secs. III and IV.

The above discussion suggests that the sediment transport
measurements proposed in [14] should be used with great
care when dealing with erosion pattern formation by laminar
flows: equilibrium state may not be reached if erosion is
intense enough. This question also arises in the study of real
rivers, but transient sediment transport is far out the scope of
the present study. The general form of the erosion law is then
taken as

B(6) = ¢ 6", (11)

reminding that ¢,=~5.13VV,/d> and B~3.75 to fit the data
of [14]. These values are fixed only as an illustrative case in
the sequel.

The second term in Eq. (7) reproduces the slope-induced
deviation of the sediment flux. [10] sets G=9I where 7y is a
constant of order one. This isotropic approximation is ques-
tionable, but should not influence qualitatively the results.
This term is mathematically essential to cut off short wave-
length instabilities (see Sec. IV B). According to the defini-
tion of the bottom shear stress (2), the sediment transport
equation (7) becomes

IIuII)B( u )
=E|\— | |\7=-vVh|, 12
q. e( d ||ll|| Y ( )

with E,= ¢{3p,,v/[2gr(py—p,) 1},

Avalanches. The full dynamics of avalanches is far out the
scope of this study. Instead, we may propose a simple model
which reproduces the following features: The sand mass is
conserved through the avalanche process; there are no ava-
lanches under a critical slope a; above the critical angle, q,
is directed toward the main slope and increases with the
slope value.

Considering these criteria, we propose the following
expression:

Vh
[Vh

where F(-)=(-—a)H(-—a) and E, is a constant. Indeed, a
similar law has been successfully employed for Aeolian
dunes in [21].

Finally, it is important to notice here that these fluxes q,
and q, do not account for the saltating grain dynamics. In a
simplified approach, the grain motions would end up into a
settling distance at which the fluxes develop (see [22] and
references therein for a discussion of these terms). It mani-
fests in the dynamics through a phase shift between the shear
stress and the fluxes. By sake of simplicity, we do not take
into account such a term although it could be implemented
easily. Such an approximation corresponds somehow to a
limit where the density ratio between grains and water is
high. In the following, it is in fact remarkable that the insta-
bility exists without such a phase shift.

Q. =~ EF(IVAlD . (13)

C. Boundary conditions

Flow equations (3) and (4) together with sediment trans-
port equations (5), (12), and (13) form a closed system. To
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solve this system in the fixed domain (), conditions must be
specified on its boundary J€). Their general form writes

Nd+pu-n=1a, Nh+ wq-n=a, (14)

where \,, w,, 7, N, py, and 1, are functions to be speci-
fied. n is the 2D unit vector normal to (), aiming outward.
In the general case, {) may include subdomains where q=0.
In such domains, the evolution equation becomes dh/dt=0.
If one wants to restrict the analysis to the active subdo-
main (),(z), where q # 0, the conditions to be imposed on its
mobile boundary (), (¢) are
u-n=0, q,-n=clh,-h_),
dh, dh_

7 +— - -V-q,+cn-Vh +n-Vh). (15)

In the above equations, ¢ is the normal velocity of the fron-
tier 3, (r), and the subscripts + and — denote quantities
evaluated, respectively, inside and outside (), (z). d/dr is the
convective derivative at a point of d€),() moving with ve-
locity cn. The first boundary condition reflects the time-scale
separation between flow and erosion (so that the condition
for the normal velocity of the boundary is zero instead of c).
The following ones correspond to the sediment mass conser-
vation equations integrated over a small domain crossed by
dQ,(1). A special case of Eq. (15) has been derived in [23].

The classical conditions for nonerodible and impermeable
banks are obtained from Eq. (15) by setting ¢=0. In that
case, and for turbulent flow, bar instabilities may develop
(see [10] for stability analysis and weakly nonlinear theory
of bars). The present paper shows that bar instabilities of the
same nature may also develop in laminar conditions. To
switch from bar to meanders and braids, the condition ¢=0
must be relaxed. In a seminal paper, [8] used an empirical
estimation of ¢ as a function of the additional stress induced
by secondary flows. They also implicitly assumed that the
bank material input due to erosion had no influence on the
bed evolution (they set q,-n=0 despite a finite value for c).
They showed that meandering results from the interaction
between alternate bars instabilities and the so-called bend
instability, which results from the curvature of the bank. For
microrivers, their hypothesis would not hold, since beds and
banks are of the same granular material. The elaboration of a
bank evolution law able to model the effect of avalanches is
the subject of ongoing work. The present stability analysis
(Sec. IV) is restricted to channels with rigid banks (c=0), as
were the first equivalent studies in the case of real rivers (see
[4]). On the other hand, in the case of a prismatic river (Sec.
II), equations are solved on the whole () domain, and thus
no boundary conditions are required. For the full determina-
tion of the solution moreover one has to prescribe global
boundary conditions on the upstream and downstream fluxes
of water.

II1. PRISMATIC CHANNELS

For a straight, x-invariant river, the equations derived in
Sec. II turn into a one-dimensional nonlinear diffusion equa-

PHYSICAL REVIEW E 76, 056318 (2007)

tion which admits self-similar solutions. The reader inter-
ested in the problem of real turbulent river cross section, a
complex two-dimensional problem in the general case, may
refer to [23-27] among others.

A. Nonlinear diffusion equation

For a prismatic river, any quantity only depends on time
and the transverse coordinate y. The flow equations (3) and
(4) thus become

S
u(y,)=22d(y,0%, v=0,
3v
d(y,1) +h(y,1) = 7(1). (16)
The water discharge
= f (ud)dy (17)

is usually fixed in experiments, and thus governs the evolu-
tion of 7(z). For the sake of simplicity, we will consider a
different case in what follows. If # instead is fixed, this
arbitrary constant may be set to zero (and thus z=—d). This
case represents a river supplied by an infinite reservoir. The
sediment transport equations (5), (12), and (13) lead to

5/1*) 1 [f(H&h*) (&h*):|
Ay €, dy= dy=
(18)

In the above equation, the starred quantities are dimension-
less. The initial depth d, is the characteristic length. The
typical widening time scale is defined by

ohx J
— e — (= h)B
e (?y*<( )

& (dp,- B
T=_0< (P, pw)> . (19)
7¢0 prdO

The nondimensional number ea:d(z)/(TEa) compares typical
avalanches flux to erosion ones. It will be considered very
small in what follows.

The nonlinear diffusion equation (18) may be solved nu-
merically. A classical first-order finite-volume scheme leads
to the solution presented in Fig. 3 at different times. The
initial width is wx(=2.5, and €, is fixed to 0.1. The value of
€, has a weak influence on the result, provided it is small (the
same computation performed with €,=0.01 gives similar re-
sults). However, the Courant, Friedrichs, and Levy condition
imposes a numerical time step smaller and smaller as the
value of €, is reduced. The erosion law is fixed by setting
B=3.75. The influence of any other parameter of the prob-
lem, such as the Froude number or the channel slope, is
embedded in the definition of the time and space scales.

Through erosion, the river widens and gets shallower,
while its cross-section area remains constant. This is in quali-
tative accordance with experiments during which the water
outflow was fixed, instead of the water level in the present
theory (see [12,28,7,29]). Since the erosion law (10) presents
no threshold, this widening process will never stop in the
framework of this model, which may seem unreasonable.
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FIG. 3. Widening of a straight laminar channel through erosion,
modeled with Eq. (18). Parameter values are €,=0.1, «=0.8, and
B=3.75. Solid lines: Numerical solutions of Eq. (18) at different
times (with avalanches). Dashed line: Self-similar solution (without
avalanches, see Sec. III B) at r«=10, t+=100, and t+=1000. The
presence of avalanches seems to influence only a small zone near
the bank. The main part of the river section tends to the self-similar
solution in any case.

Some authors [7,29] managed to reach an equilibrium width,
but in most experiments [12,13] the channel invariance along
the x axis falls before any equilibrium can be reached, due to
bar instabilities ([7,29] removed the meandering tendency by
using a half-river). To our knowledge, no river-widening ex-
periments were carried out in the laminar regime at a fixed
water level.

B. Self-similar solutions

If avalanches are neglected, or if the transverse slope of
the channel dh/dy can remain always smaller than the critical
slope « (so that no avalanche occurs), the last term of Eq.
(18) drops. This particular case has simple self-similar solu-
tions of the form

1
hoe(ys, 1) = Wf(x), (20)

where y=y«/t#*?_ Then Eq. (18) leads to

I s £>_
ax<( H ax+ﬁ+2 =0. @D

If f, is a symmetrical solution to Eq. (21), df,/dx=0 at x
=0, and thus integration of Eq. (21) gives

s

B B 2>“ﬁ. | 2(B+2)
_ (A—Z(ﬁ+2)X fxe|0yA—5— |

0 elsewhere,
(22)

where A is a constant. Let A= be the (nondimensional) area
of the cross section. Then
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Ax= f h*(y*,t*)dy*

0

=-— AI/B+1/2I\2<B+2)/B ( B

, 18
. mf—l) dé. (23)

Thus when avalanches can be neglected, Eq. (18) admits a
set of self-similar solutions parametrized by their cross-
section area. The solution corresponding to Ax=-2.5 is rep-
resented on Fig. 3. Despite its rectangular initial cross sec-
tion, the numerical solution converges toward its self-similar
counterpart. This behavior seems quite general: It very
weakly depends on the initial conditions or the value of 3.

Only for B=1 (that is for an unrealistic linear erosion law)
does the self-similar solution behave regularly at the banks.
In that case, the river cross section is a parabola. Its width
increases as ¢'/3 while it shallows as ~'/3. If the initial shape
is flat enough to avoid avalanches, this condition holds at any
time. Unfortunately, this case cannot model erosion pattern
formation, since it is unconditionally stable (see Sec. IV).

On the other hand, if 8>1 the picture is quite different.
The continuous widening process still holds: the width in-
creases as 1#*?) while the depth decreases as r~V/(F+2),
However, in that case the bed slope dh=/dy+ diverges at the
banks. Thus avalanches must occur at the banks, and the
self-similar solution fails. This tendency is observed in labo-
ratory experiments (see [30] among others), and was already
pointed out in [23]. The effect of bank avalanches is difficult
to quantify analytically. According to numerical simulations
in the case B=3.75, however (see Fig. 3), they do not seem
to influence strongly the bed evolution far enough from the
banks. Consequently, one may still consider the results of the
self-similar theory as a good approximation of the full sys-
tem solutions.

IV. LINEAR STABILITY

Experimental channels such as the one of [12] or [13]
often remain stable for a while, then develop meanders
which in turn are followed by more complex braidedlike
patterns. This scenario of transitions (sometimes called
aging) may be interpreted as the successive dominance of
different unstable modes. If the widening process presented
in the previous section is slow enough, a straight river may
be chosen as a quasistatic base state for a stability analysis.
This is what we will assume in the following, so we will
disregard any interaction between widening and instabilities.

A. Derivation of the dispersion relation

In order to present the simplest stability model which
keeps the essential features of channel stability, we will con-
sider a rectangular base state with solid-wall boundaries, of
width w, and depth d, (its aspect ratio is thus R=w/d,)). The
boundary conditions at the bank are u-n=0 and q-n=0. The
basic water velocity is uniform and parallel to the x axis
[uo= gSa%/ (3v)], and so is the basic sediment flux
[qo=E,(uy/dy)P]. Let us seek traveling-wave perturbations of
this base state:
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‘P(X,y,t) = QDO"' 6@*(L)ei[kX/WO_wt/('yTR)]’ (24)
Wo

where ¢=(u,v,h,d,q,,q,). The base state corresponds to
@o=(up,0,-dy,dy,qy,0) and the perturbation is =
= (ugus , ugv, dohs= ,dod= , qoq. =, qoqy *). T=dowo! (YRqo) is
the characteristic erosion time defined in Sec. III A, and € is
a small dimensionless amplitude of the perturbation. k is a
real dimensionless wave number whereas w is complex in
the general case. Equations (3), (4), (12), and (5), lead to the
following system:

6 ,. : .
gF ik + RS |us + ikh+ + (ik = 2RS)d+ =0, (25)

6 ,. dds  dhs
—F%ik+RS |Jvs+ — +—=0, (26)
5 dy dy
d
ik(ds + us) + = 20, (27)
dy
dq,
—iwh+ kg, s + 25—, (28)
£ dy
ik
Gy = Bus — %h* — B, (29)
v dhs
qy* =D* — E dy . (30)

In the above system, F=u,/(gd,)"? is the Froude number of
the unperturbed channel. Parameters F, S, and R may be
varied independently in experiments. Indeed, if Q,, is the
water outflow of the river, then

3Fv 21 1/3
WOZR[(T) —} s (31)
8
9F8V5 1/3
Qw=3R( = ) (32)

The full (F,R,S) space may be explored by tuning the slope
of the apparatus, the initial width of the channel, and the
water outflow. Of course, the validity of the present theory
requires the parameters to satisfy some conditions. First, the
flow has to be laminar. The low Reynolds number condition
can be easily checked:

_udy _3F?

Re .
v S

(33)
Capillarity can also cause the failure of the theory [33]. Near
the banks of the channel, capillarity generates a meniscus of
characteristic size /. (I,.=[I'/(pg)]"’?, where T is the surface
tension). The quantity of water flowing through the meniscus
zone should remain negligible as compared to the total out-
flow. As a crude approximation, the outflow in the meniscus
zone Q,,, is evaluated by Poiseuille’s formula: Q,,,

PHYSICAL REVIEW E 76, 056318 (2007)

~ gSl‘Cl/ v. The condition Q,,>Q,,, thus reads

l. 4
R> (—) ) (34)
dy
The ratio of the water depth versus the capillary length is
given by
dy p\ 2 Fv\?3
_:32/3 1/6<_> i . 35
-7 ¢ \r) s (35)

Consequently, Eq. (34) may be satisfied for any values of R,
F, and S provided the viscosity of the fluid is high enough
[34]. Typical parameter values during the experiment of [12]
(carried on with pure water) are Q,=13X10°m3s7!, §
=0.088, and wy=0.1 m. The nondimensional number of the
experiment thus are R=~130, F=2, Re=130, and dy/l.
~(.3. Condition (34) was not satisfied in this experiment.
However, we expect that the error resulting from this failure
should only affect the evaluation of nondimensional param-
eters from the experimental data, but the qualitative behavior
predicted by the theory should hold.

If the linearized transport equations (29) and (30) are used
to remove ¢, » and g, » from the mass conservation equation
(28), Egs. (25)—(28) become a system of four equations with
unknowns ux, v*, dx, and h=. The velocities u= and v+ may
then be expressed as functions of dx and hx through the
momentum equations (25) and (26). The conservation of wa-
ter and sediment mass thus become a system with unknowns
ds« and h=, which in turn can be reduced to

d*hx d*hs
——a +tA——> +Bhx=0. (36)
dy dy

In the above equation,
A ={36F*Ky+ 30F%k[- 2k*>y — ikR(1 + B+ 4Sy) + iRw]
+25RS[2ik>y+ kR(- 3 + B—3S7)
+ Rwl}/[5(6F’k — 5iRS) ],

1 6F?
B= —{k{k3<)f— 5 7) +ik*R(2B+3S7)
y

1
+ gi(— 5+ 6F)kRw+ 3R25w] } ) (37)

The boundary conditions state that both the water velocity
and the sediment flux vanish at the bank. Thus Eq. (30) im-

plies that

dh+(1\ dh«( 1

—I\z)=—7|-2]=0. (38)
dy \2 dy 2

Equation (26) then leads to dd«/dy=0 at the banks. Equation
(25) implies in turn that dus/dy=0 at the banks. Due to Egs.
(29) and (27), respectively, dg, «/dy=0 and d*v«/dy*=0 at
the banks. The sediment mass conservation (28) finally im-
poses that dzqy,*/ dy®=0 at the banks. One may then deduce
from the second derivative of Eq. (30) that

$Phs {1\ Phs( 1
Tz ]=—=|-2/=0. (39)
dy’ \2 dy 2
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Let sy, 55, —s;, and —s, be the four solutions of the char-
acteristic equation attached to Eq. (36), namely

s*+As’+B=0. (40)

Then, if C, ,, C_, C,, and C, _ are four independent con-
stants,

hs = C|’+€s1y + C] ‘_e_sly + C2y+el‘v2y + CZ,—e_Szy (41)

is a solution of Eq. (36). Such a solution must satisfy the
boundary conditions (38) and (39), that is

) ) /2 —55/2
SI(C1’+€S1 - Cl’_e 51 ) + S2(C2’+€52 - C2’_€ 52 ) = 0,

—5y2 2 —55/2 2
51(C 4”1 = C 1 _e*V?) +55(Cy 672" = Cy _e?7) =0,

3 2 N N /2 —5y/2
57(C 1€ 1" = Cy _e™17) +55(Cy 42" = Cy_e™27) =0,

3 _ . 3 _ .
51(Cp e = Cy _e1?) + 55(Cy 72 = C, ™) = 0.

(42)
The determinant of the system (42) reads

45%52(s? — 53)° sinh(s,)sinh(s,), (43)

and vanishes only if s=in, where n is an integer (provided
s% and s% are distinct). The integer n corresponds to the num-
ber of roots of A+ in the width of the river. One may then
derive the dispersion relation from Eq. (36):

o ={5kR{5iRS[— n*m*(= 3 + B) + 2k* ]
- 6F [ 2K* B+ n*m*(1 + B)]}
—i(k?> + n*7?) (6 F*k — 5iRS)[(- 5 + 6 F)k?
- 5n*a? — 15ikRS1y}/{R(6 F’k — 5iRS)[(— 5 + 6 F)k>
- Sn*a* - 15ikRS]}. (44)

If A>=4B, then the roots s, and s, are equal. Similarly, if
A=0, s; is the opposite of s,. In both cases, however, the
boundary conditions impose again s=inr, and the dispersion
equation (44) is still valid.

B. Results interpretation

The linear stability of a channel depends on the sign of
the maximum growth rate over n and k, respectively, the
transverse and longitudinal wave numbers. We will thus fo-
cus on the imaginary part o of w in what follows. Let g, be
the maximum growth rate, and k,, and n,, the corresponding
wave numbers [i.e., o0,=0(k,.n,)=max;.z,n(0)]. The
transverse wave number n characterizes the instability pat-
tern: n=0 for y-invariant dunes (this mode can also initiate
step-pool instability), n=1 for meanders, and n>1 for
braided patterns. The present theoretical framework fails to
predict the step-pool instability often observed in narrow
channels [31], as o is always negative for n=0. This is not
surprising for the phase shift between the bed deformation
and the water shear stress is neglected here (this phase shift
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FIG. 4. Linear growth rate o of bed instability in a laminar river,
versus the corresponding nondimensional wave number k. The fixed
parameter values are $=3.75, y=1, and $=0.0875. The Froude
number and aspect ratio are varied according to a straight river
widening (see Sec. IV B and points 3; in Fig. 5). Above: R;=20.3
and F;=3.94; middle: R,=35.0 and F,=3.21; below: R;=55.0 and
F3=2.71. For each set X;=(R;,F;), the solid curve corresponds to
the mode n=1, whereas the dashed one corresponds to the mode
n=2. The successive dominance of modes provides an interpreta-
tion for the transition from alternate bars to braids observed experi-
mentally in [12].

controls sand ripple formation, see for instance [22]). For
higher modes, on the other hand, a positive growth rate is
possible (see Fig. 4), despite the lubrication approximation.
This indicates that the instability mechanism governing bar
formation is different from the phase shift induced by the
advection term in the case of dunes and ripples.

The fluid and sediment choices determine parameters y
and . Both parameters are crucial to the present model. The
diffusion term which is proportional to vy stabilizes the high n
modes. Without it, the higher n, the higher o,,. As in [10], we
take y=1 in the following. If B=1, that is, if the sediment
flux is proportional to the shear stress, then no instability
ever appears (again o is always negative in that case). Insta-
bility may occur only if f>1. 8=3.75 is chosen hereinafter
as an illustrative case (see Sec. II B).

Figure 4 illustrates the transition to bed instability as the
aspect ratio is increased, for constant tilt and Froude number.
A deep and narrow channel is stable, as for no values of n
and k can o be negative. A shift to a larger aspect ratio value
allows for the n=1 mode to be unstable. For a still wider
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FIG. 5. Stability diagram for a laminar channel. The domains
(separated by solid lines) are named after the most unstable mode
between n=1 and n=2. The parameters values are =3.75, y=1
and S=0.0875. The dashed lines represent the evolution of a
straight river when the water level is imposed [F=F,(R/R,)>*] or
when the outflow is imposed [F=F,(R/R)~**]. The three points 3;
correspond to the three cases presented in Fig. 4.

channel, both n=1 and n=2 modes are unstable, but the lat-
ter grows faster. These transitions can be summarized in a
three-dimensional phase diagram, with coordinates R, F, and
S. A constant S slice of this diagram is presented in Fig. 5.
The borders between domains are characterized by the fol-
lowing relations (o, is the maximum growth rate corre-
sponding to mode n): ¢,, ;=0 between the stable domain and
the mode 1 domain; o, ;=0,,, between the mode 1 domain
and the mode 2 domain; o,,,=0 between the stable domain
and the mode 2 domain. Each point of the curves represented
in Fig. 5 was obtained by numerical maximization of the
dispersion equation.

The most surprising feature appearing on the diagram in
Fig. 5 is that bars can be unstable even for vanishing Froude
number (and thus for vanishing Reynolds number). In that
case, inertia is completely neglected. In other words, bars
may develop in a purely viscous flow, which is impossible
for dunes and ripples. Since a purely viscous flow can
present no transverse recirculation, the above statement
proves that neither turbulence nor recirculation is inherently
linked to bar formation.

The same diagram also provides a crude interpretation for
the aging of laminar laboratory rivers. Let us consider for
example the case of Sec. III, for which the mean water level
is fixed, while its bed and banks are freely eroded. If we
assume a quasistatic evolution of the bed width so that the
stability analysis for fixed wall can be roughly used, we can
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draw a schematic scenario for the river deformation. Thus,
the tilt S remains constant throughout the experiment
whereas, in accordance with Eq. (22), the Froude number
and aspect ratio evolve as follows:

R o t2/(ﬁ+2)’ F o A12(B+2)] (45)

This parametrized curve corresponds to F=Fy(R/Ry)>* in

the stability diagram (the subscript 0 denotes initial condi-
tions). In most cases this curve comes successively through
the three stability domains of Fig. 5, allowing for the succes-
sive development of different bar modes. If the water output
is conserved instead of the water level (this condition is more
common in experiments), the straight channel evolution is
characterized by

F=Fy(RIRy) 8. (46)

Again, for realistic initial conditions (Ry=20.3 and F,
=3.21 in the experiment in [12]), the river undergoes differ-
ent instability regimes as it ages. The three points 2,; drawn
on Fig. 5 would then represent three different states of the
same experiment, extrapolated from the initial condition us-
ing Eq. (46). The corresponding growth rates are plotted in
Fig. 4. When the highest growth rate of the first mode
crosses zero, alternate bars appear, eventually replaced by
higher order modes, leading to braided patterns.

If a threshold is introduced in the erosion law, the river
eventually reaches an equilibrium state. The position of this
equilibrium in the stability diagram is an indication about the
instability patterns the river will preferentially develop. For
instance, we may expect that a river will develop meanders if
its equilibrium state lies in the domain where the n=1 mode
is the most unstable one.

V. CONCLUSION

The present paper demonstrates that the equations govern-
ing the evolution of laminar microrivers are very similar to
their counterparts in the turbulent case. Experimental evi-
dence of this similarity is collected in [11]. This result sug-
gests that microrivers could facilitate the examination of
some remaining difficulties of river morphodynamics, such
as nonlinearities or bank evolution. In a first attempt to de-
velop viscous channel widening and stability theory, we pre-
sented a two-dimensional shallow-water model. A very sim-
plified analytical approach based on this model was
sufficient to describe qualitatively the aging process ob-
served in some experiments. A diagram presenting the domi-
nant unstable modes with respect to the channel tilt, Froude
number, and aspect ratio was obtained (Fig. 5), which shows
a large domain of existence for the meandering mode
(n=1) at small (or even null) Froude number. This illustrates
the sound difference between bars and dunes or ripples,
which need inertia to grow.

The use of a fluid more viscous than water in experiments
would allow one to reach very low Froude numbers, while
reducing the perturbing effect of capillarity. The consecutive
reduction of the Reynolds number would prevent recircula-
tion, thus allowing the experimental separation between the
effects of recirculation and bar instability.
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The relaxation of the rigid banks hypothesis requires the
development of bank erosion models, able to take avalanches
into account. Such an improvement, associated with numeri-
cal simulation, would allow one to test the laminar shallow-
water theory against experiments in conditions closer to
natural rivers.
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